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ABSTRACT The geographic expansion of chronic wasting disease (CWD) in U.S. white-tailed deer
(Odocoileus virginianus) has been largely unabated by best management practices, diagnostic surveillance,
and depopulation of positive herds. Using a custom Affymetrix Axiom single nucleotide polymorphism (SNP)
array, we demonstrate that both differential susceptibility to CWD, and natural variation in disease pro-
gression, are moderately to highly heritable (h2 ¼ 0:337 6 0:079 ─ 0:637 6 0:070Þ among farmed U.S.
white-tailed deer, and that loci other than PRNP are involved. Genome-wide association analyses
using 123,987 quality filtered SNPs for a geographically diverse cohort of 807 farmed U.S. white-tailed
deer (n = 284 CWD positive; n = 523 CWD non-detect) confirmed the prion gene (PRNP; G96S) as a large-
effect risk locus (P-value , 6.3E-11), as evidenced by the estimated proportion of phenotypic variance
explained (PVE$ 0.05), but also demonstrated that more phenotypic variance was collectively explained by
loci other than PRNP. Genomic best linear unbiased prediction (GBLUP; n = 123,987 SNPs) with k-fold cross
validation (k = 3; k = 5) and random sampling (n = 50 iterations) for the same cohort of 807 farmed U.S. white-
tailed deer produced mean genomic prediction accuracies $ 0.81; thereby providing the necessary
foundation for exploring a genomically-estimated CWD eradication program.
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The fatal wasting syndrome known as chronic wasting disease
(CWD) was first observed among captive mule deer (Odocoileus
hemionus) and black-tailed deer (Odocoileus hemionus columbianus)
within several Colorado wildlife facilities during the late 1960s,
and histologically recognized as a prion disease by the late 1970s
(Williams and Young 1980; Moreno and Telling 2018). Thereafter,
CWD was described in free-ranging U.S. mule deer, elk (Cervus
elaphus nelsoni), white-tailed deer (Odocoileus virginianus; hereafter
WTD) and moose (Alces alces shirasi), with subsequent diagnostic
surveillance suggesting an irreversible geographic expansion of the
disease among farmed and free-ranging populations of these species
(Moreno and Telling 2018; Gavin et al. 2019; Osterholm et al. 2019).

At present, at least 26 U.S. states and multiple Canadian provinces are
known to be affected by CWD (Moreno and Telling 2018; Gavin et al.
2019; Osterholm et al. 2019). Likewise, Norway, Finland, and the
Republic of Korea have also reported CWD in free-ranging reindeer
(Rangifer tarandus; Norway), moose (Norway, Finland), and import-
ed elk (Korea) (Moreno and Telling 2018; Gavin et al. 2019; Osterholm
et al. 2019). The implementation of modern best management practices,
including containment and depopulation of positive herds, has not
prevented the emergence of CWD in new geographic areas (Moreno
and Telling 2018; Gavin et al. 2019; Osterholm et al. 2019). Therefore, a
need currently exists to develop novel strategies to reduce the prevalence
of CWD among farmed deer and elk.

MATERIALS AND METHODS

Study overview
Herein, we investigate differential susceptibility to CWD among
farmed U.S. WTD by utilizing genomic DNA samples from CWD
positive and CWD non-detect WTD to perform next-generation
sequencing with variant prediction for the construction and valida-
tion of a medium density SNP array. Thereafter, we use the array in
conjunction with PRNP genotypes to conduct genome-wide association
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analyses (GWAA’s) and produce marker-based heritability estimates.
Finally, we conclude our study by utilizing the genome-wide SNP data
to deploy genomic prediction equations with k-fold cross validation
to assess the potential for developing a genomically-estimated CWD
eradication program.

Animal resources, CWD diagnostics, and DNA isolation
Frozen whole blood samples (n = 448) and rectal biopsies (n = 37)
from farmed U.S. white-tailed deer (WTD; both sexes) were available
within an existing USDA APHIS repository that was created via
federal CWD surveillance activities; including depopulations of CWD
positive herds (USDA APHIS, Fort Collins, CO). All herds included
both CWD positive (n = 256) and CWD non-detect (n = 229) WTD
(Thomsen et al. 2012), with geographic representation that included
WTD farms located in the U.S. Midwest, Northeast, and South. All
diagnostic classifications were based upon immunohistochemistry
(i.e., IHC of lymph node, obex), as implemented and performed
at USDA National Veterinary Services Laboratory (NVSL) in Ames
Iowa (Thomsen et al. 2012). Genomic DNA was isolated from frozen
whole blood using the Applied Biosystems MagMAX DNA Multi-
Sample Ultra Kit with the KingFisher 96 Purification System
(ThermoFisher), as recommended by the manufacturer, at the Texas
Veterinary Medical Diagnostic Laboratory (TVMDL; College Station,
TX). Genomic DNA was isolated from WTD rectal biopsies using
the LGC sbeadex tissue purification kit (LGC) with automation
at GeneSeek Neogen (Lincoln, NE). Hair samples (n . 700) from
farmed WTD (both sexes) were also available within an existing
Texas Parks and Wildlife Department (TPWD; Austin, TX) repos-
itory created via surveillance and depopulation efforts after the initial
detection of CWD in Texas. At the time of study, sample repositories
for these herds included CWD positive (n $ 100) and CWD non-
detect (n $ 600) WTD, with a geographic representation that
included WTD farms located in the U.S. South (Texas). All diag-
nostic classifications for TPWD samples were based upon IHC (i.e.,
lymph node, obex, and one tonsil) initially performed at TVMDL,
with further confirmation at NVSL (Thomsen et al. 2012). Genomic
DNA was isolated from WTD hair follicles using the LGC sbeadex
tissue purification kit (LGC) with automation at GeneSeek Neogen
(Lincoln, NE). All genomic DNAs were quantified and evaluated for
purity (260/280 ratio) via Nanodrop (ThermoFisher).

Reduced representation libraries and sequencing
Pooled DNA samples were previously shown to be effective for variant
prediction; thus enabling downstream genotyping in WTD (Seabury
et al. 2011). Therefore, pooled DNA samples were created for CWD
positive (WT1) and CWD non-detect (WT0) WTD acquired from the
USDA APHIS repository (frozen blood). Briefly, WT1 (n = 190) and
WT0 (n = 184) genomic DNAs with concentrations$ 15 ng / ml were
used to construct sequencing pools representing depopulated WTD
from the U.S. Midwest, Northeast, and South by targeting 50 ng of
genomic DNA per WTD in each respective pool (WT1, WT0).
Genomic DNAs with concentrations , 15 ng / ml were retained
for downstream Affymetrix Axiom and PRNP genotyping. Aliquots
from each genomic DNA pool (WT0, WT1) were digested with
EcoRI, HindIII, and PstI (NEB) in 1X CutSmart buffer for 4 hr at 37�.
Enzymes were heat inactivated at 80� for 20 min and held at 10� until
ligation. Ligase buffer, ligase (NEB) and barcoded enzyme-specific
adapters compatible with DNA possessing EcoRI, HindIII or PstI
overhangs were added to the digested samples, and incubated at 16�
for 8 hr. Following heat inactivation at 80� for 20 min, 1/10th volume

of 3MNaAc (pH 5.2) and two volumes of 100% ethanol were added to
each sample, and then held at -20� for 1 hr before spinning at high
speed for 10 min in a bench-top microfuge. Pellets were washed twice
in 1 ml 70% ethanol and resuspended in 130 ml 1X TE. Samples were
then sheared to an average size of 350 bp on the Covaris E220
sonicator, and AMPure XP bead purified as per the manufacturers
protocol (Beckman Coulter). Sheared DNA fragments were size
selected using a Pippin Prep 2% dye-free agarose gel with internal
size markers (Sage Bioscience); aiming for 300-800 bp inserts. Re-
covered samples were cleaned with 1X AMPure XP beads and end-
repaired first with Bst DNA Polymerase (NEB), then with a DNA
End Repair Kit (NEB), and A-Tailed using Klenow Fragment (39/59
exo-) (NEB) in the presence of 50 nM ATP. An Illumina P7-adapter
(Adapter B) was ligated to the A-tailed ends as described above.
Following two rounds of AMPure XP bead purification, 150 ng of
each pool was then subjected to “pre-selection PCR” (PreCR) in
which a biotinylated forward primer (P5-Select) and unique indexed
reverse primers (TDX) were used to amplify and tag desired DNA
fragments. Reactions (200ml total) contained 200 nM dNTPs, bio-
tinylated forward and two P7-index primers per pool, 4 units Q5
Hi-Fidelity Taq (NEB), and were split into 2 X 100 ml volumes for
thermocycling. Following an initial denaturation at 98� for 30 sec,
samples were subjected to 15 cycles of 98� for 10 sec, 72� for 30 sec
then a final elongation at 72� for 5 min and held at 4�. PCR products
were purified using Qiagen PCR purification columns, then 1X
AMPure XP beads, and quantified via DeNovix. Removal of un-
desirable fragments (P5 to P5 and P7 to P7 ligated products) was
achieved with Dynabeads M-270 Streptavidin coupled magnetic
beads (ThermoFisher). Briefly, 50 ml of beads per sample were
captured and washed twice with 1X Bead Washing Buffer (1X
BWB, 10 mM Tris-HCl with pH 7.5, 1 mM EDTA, 2 M NaCl).
Beads were resuspended in 100ml 2X BWB andmixed with 2000 ng of
PreCR product in 100 ml EB. After 20 min at room temperature,
beads were captured and washed three times in 200 ml 1X BWB, twice
in 200 ml water, and once in 100 ml 1X SSC. Beads were then
resuspended in 50 ml 1X SSC, heated at 98� for 5 min, and placed
on a magnet, with the supernatant removed thereafter. This elution
was repeated and the final supernatants were purified with Qiagen
PCR columns, as recommended by the manufacturer. The eluted
ssDNA was DeNovix quantified, and diluted to 1 ng/ml with EB. A
final PCR was performed on 10 ng of input DNA using FiLi-F1 and
FiLi-R1 primers in a 50 ml reaction, with only 8 cycles. Final PCR
products representing WT0-EcoRI, WT0-HindIII, WT0-PstI, WT1-
EcoRI, WT1-HindIII, and WT1-PstI were purified with 1X AMPure
XP beads, quantified and assessed for quality on a Fragment Analyzer
(Advanced Analytics), and sequenced (2 · 125 bp, paired end) on the
Illumina HiSeq 2500 at the Texas AgriLife Genomics and Bioinfor-
matics Core Facility at Texas A&M University. Raw reads generated
for each library were as follows: WT1 EcoRI (134,299,714); WT1
PstI (175,412,740); WT1 HindIII (152,371,052); WT0 EcoRI
(145,989,752); WT0 PstI (120,598,450); WT0 HindIII (137,148,058).
Primers used were as follows: For ligation to restriction enzyme cut
DNA, adapters were made by mixing equimolar amounts of top (T)
and bottom (B) oligos in 1X oligo hybridization buffer (50 mMNaCl,
1 mM EDTA, 10 mM Tris-HCl, pH 8.0), heating them to 98� for
1 min, and allowing them to cool to room temperature at a rate of 0.1�
per second. Primer sequences used were as follows (X denotes bases
used for barcoding): Eco_T,59-AAT GAT ACG GCG ACC ACC
GAG ATC TAC ACX XXX XXX XAC ACT CTT TCC CTA CAC
GAC GCT CTT CCG ATC T-39; Eco_B,59-AAT TAG ATC GGA
AGA GCG TCG TGT AGG GAA AGA GTG TXX XXX XXX GTG
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TAG ATC TCG GTG GTC GCC GTA TCA TT-39; Hind_T, 59-AAT
GAT ACG GCG ACC ACC GAG ATC TAC ACX XXX XXX XAC
ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T-39; Hind_B,
59-AGC TAG ATC GGA AGA GCG TCG TGT AGG GAA AGA
GTG TXX XXX XXX GTG TAG ATC TCG GTG GTC GCC GTA
TCA TT-39; Pst_T, 59-AAT GAT ACG GCG ACC ACC GAG ATC
TAC ACX XXX XXX XAC ACT CTT TCC CTA CAC GAC GCT
CTT CCG ATC TTG CA-39; Pst_B, 59- AGA TCG GAA GAG CGT
CGT GTA GGG AAA GAG TGT XXX XXX XXG TGT AGA TCT
CGG TGG TCG CCG TAT CAT T-39; Adaptor-B_T, /5Phos/GAT
CGG AAG AGC ACA CGT CTG AAC TCC AGT CAC-39; Adaptor-
B_B, 59-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC
T-39; P5_Select, /5BiotinTEG/AAT GAT ACGGCGACCACC GAG
ATC TAC AC-39; FiLi-F1: 59-AAT GAT ACG GCG ACC ACC GAG
ATC TACAC-39; FILi-R1: 59-CAAGCAGAAGACGGCATACGA
GAT-39; TDX, 59-CAA GCA GAA GAC GGC ATA CGA GAT XXX
XXX XGT GAC TGG AGT TCA-39.

Sequence analysis and affymetrix axiom array design
All Illumina sequences were trimmed for quality and adapters using CLC
Genomics Workbench 10.1.1 (Qiagen), as previously described (Halley
et al. 2014; Halley et al. 2015; Sollars et al. 2017). All trimmed reads were
mapped to the WTD genome assembly (GCF_002102435.1 Ovir.te_1.0;
https://www.ncbi.nlm.nih.gov/assembly/GCF_002102435.1/) using the
CLC Genomics Workbench 10.1.1 reference mapping algorithm
(Seabury et al. 2011; Halley et al. 2014; Halley et al. 2015; Sollars et al.
2017). Variant prediction was performed using a probabilistic approach
implementedwithinCLCGenomicsWorkbench 10.1.1 (Halley et al. 2014;
Halley et al. 2015; Oldeschulte et al. 2017; Sollars et al. 2017). This
algorithm estimates error probabilities from quality scores, and uses these
probabilities to determine the most likely allele combination per nucle-
otide position, thus facilitating a user-specified minimum probability
threshold (P $ 0.95) for variant prediction, and variant quality scores
(Halley et al. 2014; Halley et al. 2015; Oldeschulte et al. 2017; Sollars et al.
2017). Additional variant prediction parameters and filters were similar
to those recently described (Seabury et al. 2011; Oldeschulte et al. 2017),
and the probabilistic approach produced evidence for 6,268,706 variants,
which included 5,561,550 putative SNPs (P $ 0.95; Minor Allele
Frequency $ 0.01). Variant prediction results were exported from
CLC as a single variant call formatted file (VCF), which was used for
SNP array design. Briefly, the VCF file was filtered according to the
Affymetrix Axiom myDesign guidelines for SNP submission (http://
www.affymetrix.com/support/technical/byproduct.affx?product=
axiom_custom_agrigenomics) using a custom python script as fol-
lows: Retain only biallelic SNPs with minimum depth = 10, maximum
depth = 150, minimumminor allele frequency (MAF)$ 0.15, minimum
SNP quality score = 30, identify probe overlaps for exclusion, and
prioritize variants that maximize array density (i.e., A/T and C/G
take up two spaces on the array). The python script as well as more
detailed documentation are available in Additional File
30 (DRYAD). The targeted number of SNPs for submission to
Affymetrix was. 200,000; to facilitate internal Affymetrix scoring
(i.e., by pconvert, best_pconvert; recommended, neutral, or not
recommended) that would enable the design of a final Affymetrix
Axiom 200K SNP array. Collectively, 200,000 SNPs were favorably
scored (n = 179,508 recommended; n = 20, 492 neutral) and used for
array fabrication.

PRNP and affymetrix axiom array genotyping
PRNP genotyping for missense variants at codons 37, 95, 96, 116, and
226 was performed at GeneSeek Neogen (Lincoln, NE) as part of an

existing commercial genotyping by sequencing (GBS) service.
Briefly, the functional PRNP gene was PCR amplified using primers
designed to be exclusionary to a processed pseudogene as pre-
viously described (O’Rourke et al. 2004), and the resulting ampli-
cons were purified via AMPure XP beads as recommended by the
manufacturer (Beckman Coulter); thus allowing for the creation of
barcoded Illumina Nextera XT DNA libraries and amplicon se-
quencing on an Illumina MiSeq. PRNP genotypes were called from
the aligned read pileups at GeneSeek Neogen, and delivered in text
format. Affymetrix Axiom 200K genotyping was also performed at
GeneSeek Neogen using the established Affymetrix best practices
workflow; with genotypes delivered in text format. Affymetrix
quality control thresholds were DQC $ 0.82, QC call rate $
97%, passing samples in the project $ 95%, and average call rate
for passing samples $ 97%. Collectively, 860 WTD samples with
the desired metadata (i.e., sex, age, U.S. general region) passed all
Affymetrix QC filters; each with 125,968 SNP array genotypes, and
paired PRNP genotypes, thus yielding a combined set of 125,973
SNP genotypes for analysis. Fifty-three WTD did not have CWD
diagnostic data at the time of study. SNPs which did not convert on
the Affymetrix Axiom 200K WTD array were primarily due to call
rates below the best practices threshold (n = 37,197), and failures to
meet thresholds in two or more best practices criteria (n = 36,045).
All SNP conversion types are comprehensively summarized in
DRYAD (Additional File 32).

GWAA and genomic prediction with cross validation
Prior to all analyses, a comparative marker map was created by
aligning the WTD PRNP sequence and all Affymetrix Axiom 200K
probe sequences with ARS-UCD1.2 (GCA_002263795.2) via blastn,
thus providing comparative evidence for the origin of the array
SNPs (i.e., autosomal vs. non-autosomal); which was necessary
because the draft de novo WTD genome assembly (GCF_
002102435.1 Ovir.te_1.0) is unanchored (i.e., by maps or in situ
hybridization). The comparative marker map was joined to the
combined set of all genotypes (PRNP + Affymetrix Axiom array),
and quality control analyses were performed in SVS v8.8.2 or v8.8.3
(Golden Helix). Initially, pairwise IBS distances were computed to
identify twins and duplicate samples. Eight samples present in both
repositories (USDA APHIS, TPWD) were purposely duplicated for
use as process controls, and correctly identified by IBS/IBD esti-
mates (Additional File 31 in DRYAD). Eight additional samples
were also identified as either duplicates or potential twins. In all
cases, only the sample with the highest call rate was retained for
further analyses. Additional quality control analyses and filtering
were as follows: sample call rate (, 97% excluded), and thereafter,
SNP filtering by call rate (. 15% missing excluded), MAF (, 0.01
excluded), polymorphism (monomorphic SNPs excluded), and
Hardy-Weinberg Equilibrium (excludes SNPs with HWE
P-value , 1e-25), which yielded 123,987 SNPs for all analyses.
PRNP SNPs which failed to endure quality control filtering in-
cluded codons 95 (MAF, 0.01) and 116 (monomorphic), whereas
codons 37, 96, and 226 remained. All GWAA’s and genomic
predictions with k-fold cross validation were performed on
807 WTD with recorded metadata that included sex, age, U.S.
general region of origin (i.e., Midwest, Northeast, South), and
CWD diagnostics. CWD phenotypes used in all analyses were:
CWD Scores (0 = non-detect, 1 = lymph node positive, 2 = lymph
node and obex positive); CWD Binary (0 = non-detect, 1 = lymph
node positive and/or obex positive). However, at the time of study,
one WTD (sample ID: MQ6Q) only possessed diagnostic data for a
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CWD positive tonsil biopsy, and thus was assigned a CWD Score
and a CWD Binary phenotype of “1”. All WTD GWAA’s were
performed using a mixed linear model with variance component
estimates, as described and implemented in EMMAX, and executed
in SVS v8.8.2 or v8.8.3 (Golden Helix), where all genotypes are also
recoded as 0, 1, or 2, based on the incidence of the minor allele
(Kang et al. 2010; Segura et al. 2012; Seabury et al. 2017; Smith et al.
2019). Briefly, the general mixed model can be specified as:
y ¼ Xbþ Zuþ e, where y represents a n · 1 vector of observed
CWD phenotypes, X is a n · f matrix of fixed effects, b is a f · 1
vector representing the coefficients of the fixed effects, u represents
the unknown random effect, and Z is a n· t matrix relating the
random effect to the CWD phenotypes of interest (Kang et al. 2010;
Segura et al. 2012; Seabury et al. 2017; Smith et al. 2019). Herein, it is
necessary to assume that VarðuÞ ¼ s2

gK and VarðeÞ ¼ s2
e I, whereby

VarðyÞ ¼ s2
gZKZ

’þ s2
e I, but in this study Z represents the identity

matrix I, and K represents a relationship matrix of all WTD samples.
To solve the mixed model equation using a generalized least squares
approach, we must first estimate the relevant variance components
(i.e., s2

g and s2
e ) as previously described (Kang et al. 2010; Segura

et al. 2012; Seabury et al. 2017; Smith et al. 2019). Variance com-
ponents were estimated using the REML-based (restricted maxi-
mum likelihood) EMMA approach (Kang et al. 2010), with
stratification accounted for and controlled using a genomic relation-
ship matrix ðG) (VanRaden 2008), as computed from the WTD
genotypes. Genomic relationship matrix (GRM) heritability estimates
(½h2 ¼ s2

g = ðs2
g þ s2

e Þ�) were produced as previously described
(Kang et al. 2010; Segura et al. 2012; Seabury et al. 2017; Smith et al.
2019). Moreover, because previous WTD studies indicate that the
probability of CWD infection increases with age (Grear et al. 2006),
and that CWD may disparately affect male and female WTD in
different U.S regions, including differences in clinical disease pro-
gression and mortality (Grear et al. 2006; Edmunds et al. 2016), the
possibility for different CWD strains must be considered (Bistaffa
et al. 2019). Therefore, the following fixed-effect covariates were
specified for comparison of GWAAs: sex, age, U.S. region of origin,
and the total number as well as types (0 = none-detected; 1 = lymph
node only; 2 = lymph node and obex) of CWD positive diagnostic
tissues, with one exception (i.e., sample ID: MQ6Q), as noted above.

For all genomic prediction analyses involving k-fold cross vali-
dation, we used GBLUP as previously described (Taylor 2014) and
implemented in SVS v8.8.2 or v8.8.3 (Golden Helix), where the
variance components were again estimated using the REML-based
EMMA technique (Kang et al. 2010) with a genomic relationship
matrix ðG) (VanRaden 2008; Taylor 2014). For WTD GBLUP
analyses, consider the general mixed model equation: y ¼ Xf Bfþ
uþ e, across n WTD samples where fixed effects specified as Bf

include the intercept and any additional covariates (i.e., U.S. region,
sex, age); but also assume VarðeÞ ¼ s2

e I, as above, and that the
random effects u are additive genetic merits (i.e., genomically esti-
mated breeding values or GEBVs) for these WTD samples, which are
produced from m markers as u ¼ Ma, where M is a n · m matrix,
and a is a vector where ak is the allele substitution effect (ASE) for
marker k: In this study, we used overall normalization for matrix M,
as implemented in SVS v8.8.2 or v8.8.3 (Golden Helix), and explored
solutions with and without gender corrections (i.e., full dosage
compensation, no dosage compensation) (Taylor 2014), to produce
GEBVs for all WTD samples as well as estimates of ASE for all SNPs.
Moreover, considering that all training set samples precede the
validation set, we define Z ¼ ½Ij0�, where the width and height of
I is given as nt , the width of the zero matrix is given as nv , and the

height of the zero matrix is nt . Thus we can partition u, Xf , and y

according to their origin (i.e., training vs. validation set) as u ¼
�
ut
uv

�
,

Xf ¼
�
Xft

Xfv

�
, y ¼

�
yt
yv

�
, and compute a genomic relationship matrix

using all samples for use with the EMMA technique (Kang et al.
2010); to implement a mixed model for the training set as follows:
yt ¼ XftBf þ Zuþ et , where VarðuÞ ¼ s2

GG and VarðZuÞ ¼
s2
GZGZ

’. Finally, we predict the validation set phenotypes as:
ŷv ¼ XfvB̂f þ ûv , from the intercept and any validation covariates
Xfv as well as the predicted values of ûv . Additional formulae and
supporting documentation are available at https://doc.goldenhelix.-
com/SVS/latest/svsmanual/mixedModelMethods/overview.html#g-
blupproblemstmt. Notably, prior to this study, GEBVs were not
estimated or utilized in WTD, and thus they cannot be expected
to be intuitive or easily understood by U.S. WTD farmers or relevant
regulatory agencies. However, the predicted CWD binary phenotypes
are both intuitive and easily understood as estimates of enhanced or
reduced susceptibility to CWD. Because GBLUP predicts CWD
binary phenotypes across a range of values (i.e., 0 to 1), SVS
v8.8.2 and v8.8.3 (Golden Helix) considers predicted values of 0.5
and higher as “1”, and, 0.5 as “0”, thus facilitating the calculation of
important summary statistics which require binary classifications.
Justification for rounding is evident within the histograms representing
the frequency distributions of the predicted CWD binary phenotypes
(Fig. S1), the relevant GEBVs (Fig. S2), and the relationship between
the predicted CWD binary phenotypes and the relevant GEBVs (Fig.
S3); with an obvious break that occurs at 0.50 (Fig. S1-S3). Binary
summary statistics for GBLUP-based genomic predictions with k-fold
(k = 3; k = 5) cross validations (n = 50 iterations) were computed in SVS
v8.8.2 or v8.8.3 (Golden Helix) as follows: Area Under the Curve as
AUC ¼ U1

n1n2
, where n1 is the sample size of observations with CWD

binary phenotypes of 0, n2 is the sample size of observations with CWD
binary phenotypes of 1, andU1 ¼ R1 2

n1ðn1þ1Þ
2 , where R1 is the sum of

the ranks for the predicted binary CWD phenotypes with actual
phenotypes of 0 (from CWD diagnostics); Mathews Correlation Co-

efficient as MCC ¼ TP�TN2 FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ�ðFPþTNÞ�ðTPþFPÞ�ðFNþTNÞ

p , where TP is the

number of true CWD positives (from CWD diagnostics), TN is the
number of true CWD non-detects (from CWD diagnostics), FP is
the number of false positives, and FN is the number of false non-detects
among the predicted CWD binary phenotypes; Genomic Prediction
Accuracy as ACC ¼ TPþTN

TPþFNþFPþTN; Sensitivity (true positive rate) as
TPR ¼ TP

TPþFN; Specificity (true negative rate) as SPC ¼ TN
FPþTN; Root

Mean Square Error as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi2ŷiÞ2
n

r
. For the GBLUP pre-

dicted CWD Scores (0, 1, 2), we also produced and report relevant
summary statistics from the k-fold (k = 3; k = 5) cross validations
(n = 50 iterations) computed in SVS v8.8.2 or v8.8.3 (Golden Helix)
as follows: Pearson’s Product-Moment Correlation Coefficient as

ry;ŷ ¼
Pn

i¼1
ðyi 2 �yÞðŷi 2 �̂yÞ
ðn2 1Þsysŷ where sy and sŷ are the standard deviations;

Residual Sum of Squares as RSS ¼ Pn
i¼1 ðyi2ŷÞ2; Total Sum of

Squares TSS ¼ Pn
i¼1 ðyi2�yÞ2; R-Squared as R2 ¼ 12 RSS

TSS; Root

Mean Square Error as RMSE ¼
ffiffiffiffiffiffi
RSS
n

q
; Mean Absolute Error as

MAE ¼ 1
n

Pn
i¼1

��yi 2 ŷi
��.

Randomizing and blinding
All GBLUP-based k-fold (k = 3; k = 5) cross validations (i.e., CWD
binary; CWD-scores) were performed using automated random
sampling to define the validation set (i.e., to predict on) and the
training set, for the specified values of k.
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Data availability
Accession codes are as follows: Illumina sequence data (SRA:
SRR10313416-SRR10313421); genotype and phenotype data (DRYAD
https://doi.org/10.5061/dryad.xd2547dcw).

RESULTS AND DISCUSSION
Using three reduced representation libraries (n = 374 farmed
U.S. WTD) and Illumina paired-end sequencing for reference map-
ping and variant prediction, we successfully constructed a custom

Figure 1 EMMAX binary case-control (0, 1) genome-wide association analyses (GWAA) for Chronic Wasting Disease (CWD) in farmed U.S. white-
tailed deer (Odocoileus virginianus; hereafter WTD). All dual-panel manhattan plots depict -log10 P-values and the proportion of phenotypic
variance explained (PVE) by white-tailed deer marker-effects on the y-axis, and the comparative position of all probe sequences on the x-axis, as
inferred by blastn alignment with the bovine genome (ARS-UCD1.2). All analyses include diagnostically confirmedCWDpositive (n = 284) and CWD
non-detect (n = 523) WTD, and marker-based GRM heritability estimates (½h2 ¼ s2

g = ðs2
g þ s2

eÞ�) (Kang et al. 2010; Segura et al. 2012; Seabury
et al. 2017; Smith et al. 2019). a, EMMAX GWAA for CWD with no fixed-effect covariates, high GRM heritability estimates (h2 ¼ 0:637 6 0:070)
and relevant positional candidate genes. b, EMMAX GWAA for CWD with fixed-effect covariates (sex, age, U.S. region), high GRM heritability
estimates (h2 ¼ 0:546 6 0:076Þ and relevant positional candidate genes. c, EMMAX GWAA for CWD with fixed-effect covariates (sex, age, U.S.
region, CWD-scores), moderate GRM heritability estimates (h2 ¼ 0:337 6 0:079Þ and relevant positional candidate genes.
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Affymetrix Axiom 200K SNP array for the WTD (See Methods). All
probe sequences were aligned to the new PacBio long-read bovine
genome assembly (ARS-UCD1.2; GCA_002263795.2), thus creating a
comparative marker map. Thereafter, we genotyped a cohort of
farmed WTD diagnostically classified (See Methods) as CWD pos-
itive (n = 284) and CWD non-detect (n = 523) from three U.S.
geographic regions (Midwest, Northeast, South). Genome-wide as-
sociation analyses were conducted using a mixed linear model with
genomic relationship matrix and variance component analysis, thus
yielding marker-based heritability estimates (GRM heritability), as
implemented in EMMAX (Kang et al. 2010; Segura et al. 2012). All
GWAA’s were carried out using 123,987 quality filtered SNPs for two
dependent variables including a binary case-control variable (0 =
non-detect; 1 = CWD positive) (Figure 1), and an interval variable
(CWD-scores) which simultaneously reflects both the total number
of CWD positive diagnostic tissues (i.e., 0, 1, 2) as well as the positive
tissue types (i.e., 1 = lymph node only; 2 = lymph node and obex;
Figure 2); with non-zero CWD-scores accurately modeling the
natural progression of disease (Thomsen et al. 2012). Across all
GWAA’s (Figure 1, Figure 2), GRM heritability estimates were

moderate to high (i.e., h2 ¼ 0:337 6 0:079 ─ 0:637 6 0:070);
thus confirming that differential susceptibility to CWD in WTD is
under genetic control, and that host genomic background also
influences variation in disease progression. Herein we also confirm
the PRNP gene as a major risk locus, and specifically, the codon
96 missense variant (G96S; binary case-control P-value , 6.30E-11;
CWD-scores P-value , 1.49E-15) as well as one upstream promoter
SNP (Affx-574071595; CWD-scores P-value # 5.40E-06) as being
significantly associated with differential susceptibility to CWD, and
with variation in natural disease progression among WTD (Figure 1,
Figure 2, Table S1) (O’Rourke et al. 2004; Seabury et al. 2007).
However, it should also be noted that 11 CWD-positive WTD
possessed the codon 96SS genotype, and the proportion of phenotypic
variance explained (PVE) by even the largest-effect PRNP SNPs
detected across all GWAA’s (G96S, Promoter Affx-574071595)
was, 0.11 (Figure 1, Figure 2), indicating that loci other than PRNP
influence differential susceptibility and disease progression. These
results are compatible with prior analyses performed in mice; where
incubation times for transmissible spongiform encephalopathies were
largely influenced by a genetic architecture independent of PRNP

Figure 2 EMMAX genome-wide association analyses (GWAA) for Chronic Wasting Disease (CWD) in farmed U.S. white-tailed deer (Odocoileus
virginianus; hereafter WTD) using an interval variable (CWD-scores) to simultaneously reflect both the total number of CWD positive diagnostic
tissues (i.e., 0, 1, 2) as well as the positive tissue types (i.e., 1 = lymph node only; 2 = lymph node and obex). All dual-panel manhattan plots depict
-log10 P-values and the proportion of phenotypic variance explained (PVE) by white-tailed deer marker-effects on the y-axis, and the comparative
position of all probe sequences on the x-axis, as inferred by blastn alignment with the bovine genome (ARS-UCD1.2). All analyses include
diagnostically confirmed CWD positive (n = 284) and CWD non-detect (n = 523) WTD, and marker-based GRM heritability estimates
(½h2 ¼ s2

g = ðs2
g þ s2

eÞ�) (Kang et al. 2010; Segura et al. 2012; Seabury et al. 2017; Smith et al. 2019). a, EMMAX GWAA for CWD-scores with no
fixed-effect covariates, high GRM heritability estimates (h2 ¼ 0:589 6 0:069) and relevant positional candidate genes. b, EMMAX GWAA for CWD-
scoreswith fixed-effect covariates (sex, age, U.S. region), highGRMheritability estimates (h2 ¼ 0:515 6 0:075Þ and relevant positional candidate genes.
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(Iyegbe et al. 2010). Across all GWAA’s (n = 123,987 SNPs), only
61 SNPs met a nominal significance level for polygenic traits (P-
value # 5E-05) (Wellcome Trust Case Control Consortium 2007;
Seabury et al. 2017), with 17 detected in more than one GWAA. This
is relatively unsurprising since EMMAX is known to produce con-
servative P-values; particularly when large-effect regions exist (Zhou
and Stephens 2012). Moreover, the architecture of both investigated
CWD traits (Figure 1, Figure 2) is such that few large-effect regions
exist (i.e., PVE$ 0.03); but together withmany smaller-effect regions, a
significant proportion of the phenotypic variance can be explained.
Interestingly, an investigation of all GWAA’s revealed many of the
same positional candidate genes (Figure 1, Figure 2; PVE $ 0.02); the
majority of which have been implicated in the pathophysiology of
various prion diseases including scrapie (i.e., ACSL4, CA3, KLF6),
bovine spongiform encephalopathy (i.e., NPAS3, BACH2, EPHA7,
ITGA4), spontaneous and familial Creutzfeldt-Jakob disease (i.e.,
HIST1H4D/OPCML, LAMA3, TTC7B), and various other neurode-
generative conditions including Alzheimer’s (i.e., DGKI, SFRP1,
SLC24A4) and Parkinson’s disease (BCL11B) (Scherzer et al. 2007;
Tang et al. 2009; Tortosa et al. 2011; Silver et al. 2012; Cohen et al. 2013;
Lambert et al. 2013; Filali et al. 2014; Lee et al. 2014; Kipkorir et al.
2015; Xerxa et al. 2016; Esteve et al. 2019; Majer et al. 2019). Summary
data for all GWAA’s and positional candidate genes (Figure 1, Figure 2)
as well as the corresponding P-P plots are provided in the supple-
mentary information (Table S1; Additional Files 1-5 in DRYAD).

To investigate the potential for developing a genomically-esti-
mated CWD eradication program for farmedWTD, we used genomic
best linear unbiased prediction (GBLUP) in conjunction with k-fold
cross validation and random sampling (Taylor 2014). Briefly, WTD
data (i.e., genotypes, CWD diagnostic phenotypes, and other met-
adata) were randomly partitioned into k -subsamples (k = 3, k = 5),
and one of these subsamples was then selected (i.e., within a discrete
fold) to serve as the validation set for genomic prediction; thus the
GBLUP model was fit using the remaining (i.e., k -1) subsamples
within that fold (i.e., the training data); until all subsamples were used
for both training and prediction. All cross validations with random
sampling were run for 50 iterations, with each iteration consisting of
either three or five folds (k = 3, k = 5), and summary statistics were
produced (See Table 1; Methods; Additional Files 6-29 in DRYAD).
Binary GBLUP models fit with no fixed-effect covariates (k = 3, k = 5)
produced high mean genomic prediction accuracies ($ 0.8167) and
specificities ($ 0.9101), with small standard deviations, but lower
mean sensitivities (# 0.6496), indicating that false negatives pose the
greatest challenge for reducing the prevalence of CWD via genomic
prediction (Table 1; See Methods). Similar results were also obtained
when binary GBLUP models were fit using sex, age, and U. S. region
of origin as fixed-effect covariates (k = 3, k = 5; Table 1). However, in
addition to false negatives, some false positive genomic predictions
were also observed; most likely due to underlying genomic suscep-
tibility coupled with either very early stages of disease (i.e., CWD

non-detect diagnostically) and/or differences in exposure (Tsairidou
et al. 2014). All results were robust to the inclusion or exclusion of
non-autosomal loci (i.e., X, MT; 123,987 SNPs vs. 120,808 SNPs,
respectively), and to full dosage compensation vs. no dosage com-
pensation when putative X-linked SNPs were included (Table 1;
Additional Files 6-29 in DRYAD). GBLUP models fit with the
CWD-scores (0, 1, 2), thus reflecting the natural progression of
disease, produced lower mean genomic prediction accuracies
(i.e., # 0.6007; See Methods; DRYAD), regardless of the inclusion
or exclusion of fixed-effect covariates (sex, age, U.S. region), non-
autosomal loci, or the implementation of full dosage compensation vs.
no dosage compensation (k = 3, k = 5).

CONCLUSIONS
Herein, we demonstrate that differential susceptibility to CWD and
variation in natural disease progression are both heritable, polygenic
traits in farmed U.S. WTD, and that genome-wide SNP data can be
used to produce accurate genomic predictions for risk ($ 0.8167);
thereby providing the first novel strategy for reducing the prevalence
of CWD. Moreover, given the genomic architecture of these traits, we
also demonstrate that PRNP genotyping alone cannot be expected to
facilitate an eradication program, or to rapidly reduce the overall
prevalence of CWD in farmed U.S. WTD.
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k-Fold
Subsample

GBLUP Model
Covariates

Mean
AUC (SD)a

Mean
Matthews

Coefficient (SD)

Mean Genomic
Prediction

Accuracy (SD)

Mean
Sensitivity

(SD)

Mean
Specificity

(SD)
Mean
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